Journal of Archives in Military Medicine

Published by: Kowsar

An Efficient Two-step Selective Synthesis of 7-Methyl-8-nitroquinoline From m-Toluidine as a Key Starting Material in Medicinal Chemistry

Ramin Zibaseresht 1 , 2 , * , Mohamad Reza Amirlou 2 and Parto Karimi 2 , 3
Authors Information
1 Department of Chemistry and Physics, Faculty of Sciences, Maritime University of Imam Khomeini, Nowshahr, IR Iran
2 Biomaterial Laboratory, Department of Toxicology, Faculty of Medicine, Aja University of Medical Sciences, Tehran, IR Iran
3 Department of Chemistry, Faculty of Sciences, North Tehran Branch, Islamic Azad University, Tehran, IR Iran
Article information
  • Journal of Archives in Military Medicine: February 15, 2014, 2 (1); e15957
  • Published Online: December 14, 2013
  • Article Type: Research Article
  • Received: November 3, 2013
  • Revised: November 15, 2013
  • Accepted: November 20, 2013
  • DOI: 10.5812/jamm.15957

To Cite: Zibaseresht R, Amirlou M R, Karimi P. An Efficient Two-step Selective Synthesis of 7-Methyl-8-nitroquinoline From m-Toluidine as a Key Starting Material in Medicinal Chemistry, J Arch Mil Med. 2014 ; 2(1):e15957. doi: 10.5812/jamm.15957.

Abstract
Copyright © 2013, AJA University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
Acknowledgements
Footnotes
References
  • 1. El-Subbagh HI, Abu-Zaid SM, Mahran MA, Badria FA, Al-Obaid AM. Synthesis and biological evaluation of certain alpha,beta-unsaturated ketones and their corresponding fused pyridines as antiviral and cytotoxic agents. J Med Chem. 2000; 43(15): 2915-21[PubMed]
  • 2. Watson AA, Fleet GW, Asano N, Molyneux RJ, Nash RJ. Polyhydroxylated alkaloids natural occurrence and therapeutic applications. Phytochemistry. 2001; 56(3): 265-95[PubMed]
  • 3. Jerom BR, Spencer KH. N-(4-Heterocyclic-N-(4-piperidinyl) amides. Eur Pat Appl EP. 1988; 277794
  • 4. Chen Y, Chen I, Tzeng C, Wang T. Synthesis and Cytotoxicity Evaluation of Certain α‐Methylidene‐γ‐butyrolactones Bearing Coumarin, Flavone, Xanthone, Carbazole, and Dibenzofuran Moieties. Helvetica Chimica Acta. 2000; 83(5): 989-94
  • 5. Atwell GJ, Baguley BC, Denny WA. Potential antitumor agents. 57. 2-Phenylquinoline-8-carboxamides as "minimal" DNA-intercalating antitumor agents with in vivo solid tumor activity. J Med Chem. 1989; 32(2): 396-401[PubMed]
  • 6. Kuo SC, Lee HZ, Juang JP, Lin YT, Wu TS, Chang JJ, et al. Synthesis and cytotoxicity of 1,6,7,8-substituted 2-(4'-substituted phenyl)-4-quinolones and related compounds: identification as antimitotic agents interacting with tubulin. J Med Chem. 1993; 36(9): 1146-56[PubMed]
  • 7. Xia Y, Yang ZY, Xia P, Bastow KF, Tachibana Y, Kuo SC, et al. Antitumor agents. 181. Synthesis and biological evaluation of 6,7,2',3',4'-substituted-1,2,3,4-tetrahydro-2-phenyl-4-quinolones as a new class of antimitotic antitumor agents. J Med Chem. 1998; 41(7): 1155-62[DOI][PubMed]
  • 8. Roma G, Grossi G, Di Braccio M, Piras D, Ballabeni V, Tognolini M, et al. 1,8-Naphthyridines VII. New substituted 5-amino[1,2,4]triazolo[4,3-a][1,8]naphthyridine-6-carboxamides and their isosteric analogues, exhibiting notable anti-inflammatory and/or analgesic activities, but no acute gastrolesivity. Eur J Med Chem. 2008; 43(8): 1665-80[DOI][PubMed]
  • 9. Reddy GV, Kanth SR, Maitraie D, Narsaiah B, Rao PS, Kishore KH, et al. Design, synthesis, structure-activity relationship and antibacterial activity series of novel imidazo fused quinolone carboxamides. Eur J Med Chem. 2009; 44(4): 1570-8[DOI][PubMed]
  • 10. Tomasoli I, Pudlo M, de Los Rios C, Soriano E, Colmena I, Gandia L, et al. Eur J Med Chem. 2011; 46: 1-10
  • 11. Zhang J, Ke X, Tu C, Lin J, Ding J, Lin L, et al. Novel Cu(II)-quinoline carboxamide complexes: structural characterization, cytotoxicity and reactivity towards 5'-GMP. Biometals. 2003; 16(3): 485-96[PubMed]
  • 12. Marchalant Y, Baranger K, Wenk GL, Khrestchatisky M, Rivera S. Can the benefits of cannabinoid receptor stimulation on neuroinflammation, neurogenesis and memory during normal aging be useful in AD prevention? J Neuroinflammation. 2012; 9: 10[DOI][PubMed]
  • 13. Tsuji K, Spears GW, Nakamura K, Tojo T, Seki N, Sugiyama A, et al. Synthesis and antinephritic activities of quinoline-3-carboxamides and related compounds. Bioorg Med Chem Lett. 2002; 12(1): 85-8[PubMed]
  • 14. Bu X, Chen J, Deady LW, Smith CL, Baguley BC, Greenhalgh D, et al. Synthesis and cytotoxic activity of N-[(alkylamino)alkyl]carboxamide derivatives of 7-oxo-7H-benz[de]anthracene, 7-oxo-7H-naphtho[1,2,3-de]quinoline, and 7-oxo-7H-benzo[e]perimidine. Bioorg Med Chem. 2005; 13(11): 3657-65[DOI][PubMed]
  • 15. Silverman RB. The Organic Chemistry of Drug Design and Drug Action. 1992;
  • 16. Thompson LA, Ellman JA. Synthesis and Applications of Small Molecule Libraries. Chem Rev. 1996; 96(1): 555-600[PubMed]
  • 17. Franzen RG. Recent advances in the preparation of heterocycles on solid support: a review of the literature. J Comb Chem. 2000; 2(3): 195-214[PubMed]
  • 18. Foley M, Tilley L. Quinoline antimalarials: mechanisms of action and resistance and prospects for new agents. Pharmacol Ther. 1998; 79(1): 55-87[PubMed]
  • 19. Kouznetsov VV, Médez LYV, Góez CMM. Reviews on classical quinoline syntheses. Curr Org Chem 2005; 9: 141
  • 20. Madapa S, Tusi Z, Batra S. Advances in the synthesis of quinoline and quinoline-annulated ring systems. Curr Org Chem. 2008; 12: 1116-83
  • 21. Marco-Contelles J, Perez-Mayoral E, Samadi A, Carreiras Mdo C, Soriano E. Recent advances in the Friedlander reaction. Chem Rev. 2009; 109(6): 2652-71[DOI][PubMed]
  • 22. Li An-Hu, Beard DJ, Coate H, Honda A, Kadalbajoo M, Kleinberg A, et al. One-Pot Friedländer Quinoline Synthesis: Scope and Limitations. Synthesis. 2010; 2010(10): 1678-86
  • 23. Aghera VK, Patel JP, Parsania PH. Synthesis, spectral and microbial studies of some novel quinoline derivatives via Vilsmeier–Haack reagent. Arkivoc. 2008; 12: 195-204
  • 24. Shivaraj Y, Naveen MH, Vijayakumar GR, Kumar DBA. Design, Synthesis and Antibacterial Activity Studies of Novel Quinoline Carboxamide Derivatives. J Korea Chem Soc. 2013; 57(2): 241-5
  • 25. Ebenso EE, Obot IB, Murulana LC. Quinoline and its derivatives as effective corrosion inhibitors for mild steel in acidic medium. Int. J. Electrochem. Sci. 2010; 5: 1574-86
  • 26. Manske RH, Kulka M. The skraup synthesis of quinolines. Org React. 1953; 7: 59
  • 27. Durce JGF. The Preparation of Certain Organic Stanno- and Stanni- chlorides Chem News. 1918; 117: 346
  • 28. Glass M, Dragunow M, Faull RL. The pattern of neurodegeneration in Huntington's disease: a comparative study of cannabinoid, dopamine, adenosine and GABA(A) receptor alterations in the human basal ganglia in Huntington's disease. Neuroscience. 2000; 97(3): 505-19[PubMed]
  • 29. Reiner A, Albin RL, Anderson KD, D'Amato CJ, Penney JB, Young AB. Differential loss of striatal projection neurons in Huntington disease. Proc Natl Acad Sci U S A. 1988; 85(15): 5733-7[PubMed]
  • 30. Allen KL, Waldvogel HJ, Glass M, Faull RL. Cannabinoid (CB(1)), GABA(A) and GABA(B) receptor subunit changes in the globus pallidus in Huntington's disease. J Chem Neuroanat. 2009; 37(4): 266-81[DOI][PubMed]
  • 31. McConnell AJ, Song H, Barton JK. Luminescence of [Ru(bpy)2(dppz)]2+ bound to RNA mismatches. Inorg Chem. 2013; 52(17): 10131-6[DOI][PubMed]
  • 32. Arnold AR, Barton JK. DNA Protection by the Bacterial Ferritin Dps via DNA Charge Transport. J Am Chem Soc. 2013; 135(42): 15726-9[DOI][PubMed]
  • 33. Muren NB, Barton JK. Electrochemical Assay for the Signal-On Detection of Human DNA Methyltransferase Activity. J Am Chem Soc. 2013; [DOI][PubMed]
  • 34. Pheeney CG, Barton JK. Intraduplex DNA-mediated electrochemistry of covalently tethered redox-active reporters. J Am Chem Soc. 2013; 135(40): 14944-7[DOI][PubMed]
  • 35. Pheeney CG, Arnold AR, Grodick MA, Barton JK. Multiplexed electrochemistry of DNA-bound metalloproteins. J Am Chem Soc. 2013; 135(32): 11869-78[DOI][PubMed]
  • 36. Komor AC, Barton JK. The path for metal complexes to a DNA target. Chem Commun (Camb). 2013; 49(35): 3617-30[DOI][PubMed]
  • 37. Sontz PA, Muren NB, Barton JK. DNA charge transport for sensing and signaling. Acc Chem Res. 2012; 45(10): 1792-800[DOI][PubMed]
  • 38. Song H, Kaiser JT, Barton JK. Crystal structure of Delta-[Ru(bpy)(2)dppz](2)(+) bound to mismatched DNA reveals side-by-side metalloinsertion and intercalation. Nat Chem. 2012; 4(8): 615-20[DOI][PubMed]
  • 39. Pheeney CG, Barton JK. DNA electrochemistry with tethered methylene blue. Langmuir. 2012; 28(17): 7063-70[DOI][PubMed]
  • 40. Ernst PRJ, Komor AC, Barton JK. Luminescent Properties of Ruthenium(II) Complexes with Sterically. Biochemistry. 50(50): 10919-28
  • 41. Barton JK, Olmon ED, Sontz PA. Metal Complexes for DNA-Mediated Charge Transport. Coord Chem Rev. 2011; 255(7-8): 619-634[DOI][PubMed]
  • 42. Slinker JD, Muren NB, Renfrew SE, Barton JK. DNA charge transport over 34 nm. Nature Chem. 2011; 3: 230–5
  • 43. Tomisek A, Graham B, Grifith A, Pease CS, Christensen BE. Syntheses of certain 8-nitroquinolines. J Am Chem Soc. 1946; 68: 1587-9
  • 44. Hurley MJ, Mash DC, Jenner P. Expression of cannabinoid CB1 receptor mRNA in basal ganglia of normal and parkinsonian human brain. J Neural Transm. 2003; 110(11): 1279-88[DOI][PubMed]
  • 45. Jack LiJ. Name Reactions (Acollection of Detailed Reaction Mechanism). 2003;
  • 46. Palmer MH. The Skraup reaction. Formation of 5- and 7-substituted quinolines. J Chem Soc. 1962; : 3645-52
  • 47. Bradford L, Elliott TJ, Rowe FM. The Skraup reaction with m-substituted anilines. J Chem Soc. 1947; : 437-45
  • 48. Beynon JH, Saunders RA, Williams AF. Mass Spectra of Organic Molecules. 1968;
  • 49. van der Stelt M, Fox SH, Hill M, Crossman AR, Petrosino S, Di Marzo V, et al. A role for endocannabinoids in the generation of parkinsonism and levodopa-induced dyskinesia in MPTP-lesioned non-human primate models of Parkinson's disease. FASEB J. 2005; 19(9): 1140-2[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments