Journal of Archives in Military Medicine

Published by: Kowsar

Use of Partial Least Squares - Structural Equation Modeling for Identifying the Most Important Variables via Application of Data Envelopment Analysis

Mehdi Sadidi 1 , * , Omid Khalilifar 2 , Maghsoud Amiri 3 and Rouhalah Moradi 4
Authors Information
1 Department of Accounting, Allameh Tabataba’i University, Tehran, Iran
2 Technical Department of Iman Reza Hospital, Tehran, Iran
3 Department of Industrial Management, Allameh Tabataba’i University, Tehran, Iran
4 Financial Management, Allameh Tabataba’i University, Tehran, Iran
Article information
  • Journal of Archives in Military Medicine: March 2018, 6 (1); e67114
  • Published Online: March 28, 2018
  • Article Type: Research Article
  • Received: February 4, 2018
  • Revised: March 1, 2018
  • Accepted: March 20, 2018
  • DOI: 10.5812/jamm.67114

To Cite: Sadidi M, Khalilifar O, Amiri M, Moradi R. Use of Partial Least Squares - Structural Equation Modeling for Identifying the Most Important Variables via Application of Data Envelopment Analysis, J Arch Mil Med. 2018 ; 6(1):e67114. doi: 10.5812/jamm.67114.

Copyright © 2018, Journal of Archives in Military Medicine. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited
1. Background
2. Methods
3. Results
4. Discussion
  • 1. Deilmann C, Hennersdorf J, Lehmann I, Reibmann D. Data envelopment analysis of urban efficiency—Interpretative methods to make DEA a heuristic tool. Ecol Indicat. 2018;84:607-18. doi: 10.1016/j.ecolind.2017.09.017.
  • 2. Farrell MJ. The Measurement of Productive Efficiency. J Roy Stat Soc. 1957;120(3):253. doi: 10.2307/2343100.
  • 3. O'Neill L. Nonparametric Diagnostics in Data Envelopment Analysis with an Application to Hospital Efficiency. Pennsylvania State University; 1997.
  • 4. Sherman HD. Hospital efficiency measurement and evaluation. Empirical test of a new technique. Med Care. 1984;22(10):922-38. [PubMed: 6436590].
  • 5. Ozcan YA. Health Care Benchmarking and Performance Evaluation: An Assessment Using Data Envelopment Analysis. New York: Springer Science + Business Media, LLC; 2007.
  • 6. Truffer CJ, Keehan S, Smith S, Cylus J, Sisko A, Poisal JA, et al. Health spending projections through 2019: the recession's impact continues. Health Aff (Millwood). 2010;29(3):522-9. doi: 10.1377/hlthaff.2009.1074. [PubMed: 20133357].
  • 7. Litvak E, Bisognano M. More patients, less payment: increasing hospital efficiency in the aftermath of health reform. Health Aff (Millwood). 2011;30(1):76-80. doi: 10.1377/hlthaff.2010.1114. [PubMed: 21209441].
  • 8. Liu JS, Lu LYY, Lu W-M, Lin BJY. A survey of DEA applications. Omega. 2013;41(5):893-902. doi: 10.1016/
  • 9. Gholami R, Anon Higon D, Emrouznejad A. Hospital performance: Efficiency or quality? Can we have both with IT? Expert Syst Appl. 2015;42(12):5390-400. doi: 10.1016/j.eswa.2014.12.019.
  • 10. Emrouznejad A, Yang G. A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016. Soc Econ Plann Sci. 2018;61:4-8. doi: 10.1016/j.seps.2017.01.008.
  • 11. Gimenez V, Prieto W, Prior D, Tortosa-Ausina E. Evaluation of efficiency in Colombian hospitals: An analysis for the post-reform period. Soc Econ Plann Sci. 2018. doi: 10.1016/j.seps.2018.02.002.
  • 12. Wagner JM, Shimshak DG. Stepwise selection of variables in data envelopment analysis: Procedures and managerial perspectives. Eur J Oper Res. 2007;180(1):57-67. doi: 10.1016/j.ejor.2006.02.048.
  • 13. Fernandez J. Comparison of the Technical Efficiency of Tax-Supported and Nonprofit Florida Hospitals Using Data Envelopment Analysis. Walden University; 2012.
  • 14. O’Neill L, Rauner M, Heidenberger K, Kraus M. A cross-national comparison and taxonomy of DEA-based hospital efficiency studies. Soc Econ Plann Sci. 2008;42(3):158-89. doi: 10.1016/j.seps.2007.03.001.
  • 15. Zhang Q. Multi-criteria Comparison of Hospital Efficiencies Using Nested Radial Data Envelopment Analysis Models. State University of New York at Binghamton, Thomas J. Watson School of Engineering and Applied Science; 2016.
  • 16. Cooper WW, Seiford LM, Tone K. Introduction to data envelopment analysis and its uses: with DEA-solver software and references. Springer Science & Business Media; 2006.
  • 17. Grisham T. The Delphi technique: a method for testing complex and multifaceted topics. Int J Manag Projects Bus. 2009;2(1):112-30. doi: 10.1108/17538370910930545.
  • 18. F. Hair Jr J, Sarstedt M, Hopkins L, G. Kuppelwieser V. Partial least squares structural equation modeling (PLS-SEM). Eur Bus Rev. 2014;26(2):106-21. doi: 10.1108/ebr-10-2013-0128.
  • 19. Fornell C, Bookstein FL. Two Structural Equation Models: LISREL and PLS Applied to Consumer Exit-Voice Theory. J Market Res. 1982;19(4):440. doi: 10.2307/3151718.
  • 20. Bag S. A Short Review on Structural Equation Modeling: Applications and Future Research Directions. J Supply Chain Manag Syst. 2015;4(3). doi: 10.21863/jscms/2015.4.3.014.
  • 21. Hays RD, Revicki D, Coyne KS. Application of structural equation modeling to health outcomes research. Eval Health Prof. 2005;28(3):295-309. doi: 10.1177/0163278705278277. [PubMed: 16123259].
  • 22. Richter NF, Cepeda G, Roldan JL, Ringle CM. European management research using partial least squares structural equation modeling (PLS-SEM). Eur Manag J. 2016;34(6):589-97. doi: 10.1016/j.emj.2016.08.001.
  • 23. Iacobucci D. Everything you always wanted to know about SEM (structural equations modeling) but were afraid to ask. J Consum Psychol. 2009;19(4):673-80. doi: 10.1016/j.jcps.2009.09.002.
  • 24. Kohl S, Schoenfelder J, Fugener A, Brunner JO. The use of Data Envelopment Analysis (DEA) in healthcare with a focus on hospitals. Health Care Manag Sci. 2018. doi: 10.1007/s10729-018-9436-8. [PubMed: 29478088].
  • 25. Green B, Jones M, Hughes D, Williams A. Applying the Delphi technique in a study of GPs' information requirements. Health Soc Care Community. 1999;7(3):198-205. [PubMed: 11560634].
  • 26. Linstone HA, Turoff M. The delphi method. Addison-Wesley Reading, MA; 1975.
  • 27. Keeney S, Hasson F, McKenna HP. A critical review of the Delphi technique as a research methodology for nursing. Int J Nurs Stud. 2001;38(2):195-200. doi: 10.1016/s0020-7489(00)00044-4.
  • 28. Ahmed S. Methods in sample surveys. Johns Hopkins Bloomberg School of Public; 2009.
  • 29. Sturgis . Patrick Confirmatory Factor Analysis (Part 3 of 6). 2016, [cited 14 January]. Available from:
  • 30. Diamantopoulos A, Winklhofer HM. Index Construction with Formative Indicators: An Alternative to Scale Development. J Market Res. 2001;38(2):269-77. doi: 10.1509/jmkr.
  • 31. Muzamil . Reflective and Formative Measures. Brief Explanation. 2012, [cited 10 February]. Available from:
  • 32. Alarcon D, Sanchez JA, De Olavide U. Assessing convergent and discriminant validity in the ADHD-R IV rating scale: User-written commands for Average Variance Extracted (AVE), Composite Reliability (CR), and Heterotrait-Monotrait ratio of correlations (HTMT). Universidad Pablo de Olavide; 2015. 38 p.
  • 33. Sosik JJ, Kahai SS, Piovoso MJ. Silver Bullet or Voodoo Statistics? Group Organ Manag. 2009;34(1):5-36. doi: 10.1177/1059601108329198.
  • 34. Henseler J, Ringle CM, Sarstedt M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J Acad Market Sci. 2014;43(1):115-35. doi: 10.1007/s11747-014-0403-8.
  • 35. Hooper D, Coughlan J, Mullen M. Structural equation modelling: Guidelines for determining model fit. Articles. 2008;1:2.
  • 36. Hesterberg T, Moore DS, Monaghan S, Clipson A, Epstein R. Bootstrap methods and permutation tests. Intro Pract Stat. 2005;5:1-70.
  • 37. Barclay D, Higgins C, Thompson R. The Partial Least Squares (pls) Approach to Casual Modeling: Personal Computer Adoption Ans Use as an Illustration. Tech Stud. 1995.
  • 38. Suk YK. Measuring the impact of Total Quality Management (TQM) on efficiency using data envelopment analysis (DEA) in the hospital industry: The case of the East South Central region of the United States. The University of Mississippi; 1999.
  • 39. Gollhofer RE. Measuring the impact of process improvement programs on the performance of hospitals in Mid-Atlantic region using data envelopment analysis. Capella University; 2016.

Featured Image:

Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments